
Analytical inversion of a particular type of banded matrix

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 755

(http://iopscience.iop.org/0305-4470/30/2/034)

Download details:

IP Address: 171.66.16.110

The article was downloaded on 02/06/2010 at 06:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 755–763. Printed in the UK PII: S0305-4470(97)74189-1
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Analytical inversion of a particular type of banded matrix
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School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London
E1 4NS, UK

Received 7 May 1996

Abstract. An alternative approach to that described in [1] is developed for analytically
inverting a particular type of tridiagonal matrix. The technique is then extended to deal with a
general banded matrix in which diagonal elements are identical and are flanked in each row by
the same set of quantities.

A recent paper [1] developed an analytical approach to the inversion of ak × k tridiagonal
matrix of the form

M =



D 1 0 0 . . . 0
1 D 1 0 . . . 0
0 1 D 1 . . . 0

. . . . . .

. . .

. . . . . .

0 0 0 . . . 1 D 1 0
0 0 0 . . . 0 1 D 1
0 0 0 . . . 0 0 1 D


(1)

whereD is an arbitrary constant. Their method was based on a calculation of the value of
the determinant of the matrix together with its cofactors and led to an explicit expression for
Rpq whereR = M−1. The purpose of the present contribution is to develop a simpler and
more direct approach to the problem whose main advantage is that it may be applied to any
k × k matrix with the following structure. The diagonal elements of the matrix are identical
and are flanked in each row by the same set ofS(< k) non-zero elements, the remaining
elements of the matrix being zero. We proceed to explain the technique by applying it first
to the tridiagonal matrixM in (1) before showing how it may be generalized.

SinceMR = I, it follows that

Rp−1q + DRpq + Rp+1q = 0 (p 6= q) (2)

Rq−1q + DRqq + Rq+1q = 1 (p = q) (3)

for 1 6 p 6 k with R0q = Rk+1q = 0. The structure of equation (2) is that of a homogeneous
difference equation with constant coefficients and we therefore look for a solution of the
form Rpq = constant×xp. This yieldsx2 +Dx +1 = 0 with solutionsx = exp(±λ) where
coshλ = −D/2. The general solution of equation (2) will therefore be of the form

Rpq = Aqepλ + Bqe−pλ (4)
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but since equation (2) does not apply whenp = q we shall suppose equation (4) to hold
for p < q, while for p > q we take

Rpq = Cqepλ + Eqe−pλ. (5)

Here Aq , Bq , Cq , Eq are arbitrary constants whose value must now be determined. We
begin with the ‘boundary’ conditionsR0q = Rk+1q = 0 given above, which relate the two
constants present in each of equations (4) and (5) and allow these equations to be rewritten
as

Rpq = Fq sinh(pλ) (p < q) (6a)

Rpq = Gq sinh[(k + 1 − p)λ] (p > q). (6b)

To determineFq and Gq we note first that although equation (2) does not apply when
p = q, the last term on the left-hand side involvesRqq whenp = q − 1. Similarly, the first
term on the left-hand side involvesRqq when p = q + 1. Thus for a consistent solution
equations (6a) and (6b) must yield the same value forRqq giving

Rqq = Fq sinh(qλ) = Gq sinh[(k + 1 − q)λ] (7)

whence

Fq = Hq sinh[(k + 1 − q)λ] Gq = Hq sinh(qλ). (8)

Finally we use equation (3) to determineHq , choosing the relevantRpq from equations (6)
and (7). Hence we obtain

Rpq = − sinh(pλ) sinh[(k + 1 − q)λ]

sinhλ sinh[(k + 1)λ]
(p 6 q) (9a)

Rpq = − sinh[(k + 1 − p)λ] sinh(qλ)

sinhλ sinh[(k + 1)λ]
(p > q) (9b)

which is equivalent to the result given in [1].
We now proceed to consider the generalization of our technique to ak × k matrix M in

which each of the (identical) diagonal elementsa0 is flanked on the left by the same set of
α(> 0) non-zero elementsa−α, a−α+1, . . . , a−1 and on the right by the same set ofβ(> 0)

non-zero elementsa1, a2, . . . , aβ . It is to be understood in this description that of necessity
not all these elements will be present in the firstα and the lastβ rows; thus, for example, the
first row will be a0, a1, . . . , aβ, 0, 0 . . . while the last row will be. . . , 0, 0, a−α, . . . , a−1, a0.
If R = M−1 it then follows that

β∑
n=−α

anRp+nq = 0 (p 6= q) (10a)

β∑
n=−α

anRq+nq = 1 (p = q). (10b)

These relations will clearly hold forα < p < k−β corresponding with those rows in which
all the elementsa−α, . . . , a0, . . . aβ occur. However, for those rows in which not all these
elements are present, equations (10) will only hold if we arrange that the spurious terms
occurring in the summations are zero. We can do this by supplementing equations (10)
(now valid for 16 p 6 k) by theS(= α + β) ‘boundary’ conditions,

R1−αq = R2−αq = . . . = R0q = 0 = Rk+1q = Rk+2q = . . . = Rk+βq . (11)
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We solve equation (10a) with a trial solution of the formRpq = constant× xp leading to

S∑
m=0

am−αxm = 0 (12)

with the set of solutionsx1, x2, . . . , xS . This in turn yields the general solution forRpq of
the form

Rpq =
S∑

r=1

Arx
p
r (p < q) (13a)

Rpq =
S∑

r=1

Crx
p
r (p > q) (13b)

where the set of 2S constantsAr andCr remain to be determined. It is to be understood
here thatA and C will (apart from r) also depend onk and q, but for simplicity
we do not show this dependence explicitly. Now, the solution (13a) must satisfy
equation (10a) for values ofp up to and includingq − 1 and for this latter value terms
appearing in (10a) include Rqq, Rq+1q, . . . Rq+β−1q , all of which, except the first, are
determined by equation (13b). Similarly the solution (13b) must satisfy equation (10a)
for values ofp down to and includingq + 1 and for this latter value, terms appearing
in (10a) include Rqq, Rq−1q, . . . Rq−α+1q , all of which, except the first, are determined
by equation (13a). For a consistent solution we therefore require that the values of
Rq−α+1q, Rq−α+2q, . . . Rqq . . . Rq+β−1q should be the same for equations (13a) and (13b),
and this will yield a set ofS − 1 homogeneous linear relations between theAr andCr . The
relations (11) (together with (13)) will yield a further set ofS homogeneous linear relations
between theAr andCr , while equation (10b) gives a single inhomogeneous relation between
these quantities. We thus have a total of 2S linear equations which will determine the 2S

constantsAr andCr(1 6 r 6 S). The coefficients in these 2S equations will involve both
k andq and an explicit solution of the equations by expansion of the relevant determinants
(using Cramer’s rule) can thus become (algebraically) prohibitive. For example, ifS = 5
we would be involved with the non-trivial task of expanding a 10× 10 determinant whose
elements depend onk andq, and even if this were done, the complexity of the results would
considerably detract from their value. We therefore proceed now to consider a technique
for significantly simplifying the solution of these 2S linear equations. We shall show that
the number of equations that require to be solved by Cramer’s rule can be reduced to a
number not exceedingS/2, so that in the above-mentioned case ofS = 5, there will be at
most two linear equations to be solved—a trivial task.

We begin with theS − 1 relations arising from the requirement (given in the last
paragraph) that equations (13a) and (b) should yield the same values forRpq for q−(α−1) 6
p 6 q + (β − 1). On defining

A′
r = Arx

q+1−α
r C ′

r = Crx
q+1−α
r (14)

these relations are readily expressed in the form

S∑
r=1

(C ′
r − A′

r )x
γ
r = 0 (0 6 γ 6 S − 2). (15)

We now develop the left-hand side of equation (10b) by substituting forRq+nq from
equations (13). We use equation (13a) for −α 6 n 6 β − 1 and (13b) for n = β (since
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n = β − 1 is the largest value for which (13a) is valid). This gives

β∑
n=−α

anRq+nq =
S∑

r=1

Arx
q
r

( β−1∑
n=−α

anx
n
r

)
+ aβ

S∑
r=1

Crx
q+β
r . (16)

It follows from equations (12) that
∑β−1

n=−α anx
n
r = −aβx

β
r and substituting into equation (16)

then yields

β∑
n=−α

anRq+nq = aβ

S∑
r=1

(Cr − Ar)x
q+β
r = aβ

S∑
r=1

(C ′
r − A′

r )x
S−1
r . (17)

Equating this to unity allows equation (10b) to be taken together with equations (15) to give

S∑
r=1

(C ′
r − A′

r )x
γ
r = 1γ+1 (0 6 γ 6 S − 1) (18a)

where 1γ+1 = 0(0 6 γ 6 S − 2) and 1S = 1/aβ . Equations (18a) form a set ofS
equations for theS unknownsC ′

r − A′
r (1 6 r 6 S) and may equivalently be written

S∑
n=1

Dmn(C
′
n − A′

n) = 1m(1 6 m 6 S) (18b)

where

Dmn = xm−1
n . (18c)

Dmn is a S × S Vandermonde matrix [2] and it is known that its inverse is given by

S∏
σ=1

(σ 6=r)

x − xσ

xr − xσ

=
S∑

t=1

[D−1]rt x
t−1 (19)

[2]; that is, [D−1]rt is the coefficient ofxt−1 in the expansion of theS−1 degree polynomial
in x given by the left-hand side of equation (19) and characterized by a particular choice
of xr . Now, the solution of equation (18b) is

C ′
r − A′

r =
S∑

t=1

[D−1]rt1t = [D−1]rs
aβ

(20)

since 1S(= 1/aβ) is the only non-zero component of1t . Further, it follows from
equation (19) that

[D−1]rs = 1∏S
σ=1

(σ 6=r)
(xr − xσ )

(21)

and thus from equations (14) and (20) that

Cr − Ar =
[
aβxq+1−α

r

S∏
σ=1

(σ 6=r)

(xr − xσ )

]−1

(1 6 r 6 S). (22)

Equation (22) is an important result as it allows us to eliminateCr in favour of Ar in
equations (11) taken together with (13), and these will then yield a set ofS equations for
the S unknownsAr . To progress further we shall now suppose thatα > β; our approach
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is easily modified ifα < β. Using equation (13a), the first set of relations in (11) may be
rewritten as

α∑
r=1

DνrA
′′
r = −

S∑
r=α+1

DνrA
′′
r (1 6 ν 6 α) (23)

whereDνr is defined in equation (18c) and A′′
r = Arx

1−α
r . The second set of relations in

(11) may be rewritten with the help of equations (13b) and (22) as

S∑
r=1

Arx
k+µ
r = −

S∑
r=1

0rx
k+µ
r (1 6 µ 6 β) (24)

where 0r is the right-hand side of equation (22). Now, since the inverse of theα × α

Vandermonde matrixDνr is known (as discussed above), the set ofα relations (23) may be
used to express eachA′′

r (and henceAr ) for 1 6 r 6 α as a linear combination ofA′′
r (and

henceAr ) for α + 1 6 r 6 S. These may then be used to eliminateAr in equation (24)
for 1 6 r 6 α in favour of Ar for α + 1 6 r 6 S. The net result of this will be to express
equation (24) as a set ofβ equations for theβ unknownsAr(α + 1 6 r 6 S), of the form

S∑
r=α+1

GµrAr = −
S∑

r=1

0rx
k+µ
r (1 6 µ 6 β) (25)

and we note that sinceα > β, the number of equations (25) is6 S/2. When these
equations have been solved forAr(α + 1 6 r 6 S), the values ofAr(1 6 r 6 α) may
be obtained from the already-calculated expressions for the latter in terms of the former.
Finally the set ofCr(1 6 r 6 S) are obtained from equation (22). As regards theq

dependence ofAr andCr it follows from equation (22) that the onlyq dependence of the
right-hand side of equation (25) is through a linear combination overt of termsx

−q
t . Thus

in view of equations (23) and (22),Ar and Cr will take the formsAr = ∑S
t=1 Brtx

−q
t ,

Cr = ∑S
t=1 Ertx

−q
t where theS × S matricesBrt andErt (with elements depending onk

but independent ofq) are given by implementing the procedures described above. It then
follows from equations (13) and (22) that the generalp, q dependence ofRpq will be of
the form

Rpq =
S∑

r,t=1

Brtx
p
r x

−q
t (p 6 q) (26a)

Rpq =
S∑

r,t=1

Ertx
p
r x

−q
t (p > q) (26b)

where

Ert = Brt + xq
r 0rδrt .

Now, in solving equation (25) two approaches are possible, based on the observation that
while the right-hand side depends on bothk andq (since0r depends onq), the matrixGµr

will depend onk but will be independent ofq. If, therefore, an expression is required for
the elements ofR in terms of bothk andp andq, it will be necessary to solve equation (25)
by Cramer’s rule and direct expansion of the relevant determinants as outlined earlier, and
for useful results (in the absence of a computer algebra program) this will be restricted to
situations where the smaller ofα andβ does not exceed, say 4 or 5. However, if expressions
are required for the elements ofR in terms ofp andq for a specifiednumerical value of
k then expressions forAr(α + 1 6 r 6 S) may be obtained from equation (25) by first
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invertingGµr numericallybefore operating with this inverse on theq-dependent right-hand
side. It is clear that this procedure can be effective for values ofα or β significantly greater
than the 4 or 5 mentioned above.

We now proceed to show that a considerable simplification occurs in the implementation
of the above technique if we confine our attention to values ofp andq which are well away
from the borders of the matrix. By this we mean that we are interested in expressions for
Rpq when the four quantitiesp, q, k − p, k − q are all greater thanZ whereZ (to be
considered in detail presently) depends on the rootsx1, x2, . . . , xS , but is independent ofk.
This will mean that for sufficiently large values ofk the vast majority of thek2 values of
Rpq will be given by the formulae which we will now derive. We begin by ordering the
rootsxr , so that|x1| < |x2| < . . . < |xS | and rewrite equation (13a) as

Rpq =
α∑

r=1

Arx
p
r +

S∑
r=α+1

Arx
p
r (p 6 q). (27)

Now, as pointed out in the last paragraph, the first set ofα conditions in (11) can be used
to determineAr(1 6 r 6 α) in terms ofAr(α + 1 6 r 6 S), the relationship taking the
form

Ar =
S∑

µ=α+1

FrµAµ (1 6 r 6 α)

where the matrixFrµ depends on the values ofα and x1, . . . , xS . This then allows
equation (27) to be expressed in the form

Rpq =
S∑

r=α+1

Ar [xp
r +

α∑
µ=1

Fµrx
p
µ] (p 6 q). (28)

Now, since thexs are ordered such that|xr | for α + 1 6 r 6 S is greater than|xµ| for
1 6 µ 6 α, it follows that for a sufficiently large value ofp (let it be Z)

∑α
µ=1 Fµrx

p
µ can

be neglected compared withxp
r , and thus forp > Z equation (13a) may be approximated

by

Rpq =
S∑

r=α+1

Arx
p
r (p 6 q). (29a)

Although the value ofZ cannot be calculated exactly, it can be estimated from the inequality
(xα/xα+1)

z � 1 corresponding toZ = γ / ln(xα+1/xα) with γ lying in the interval of, say,
5–10. We now follow the same procedure with equation (13b), writing it initially in the
form

Rpq =
α∑

r=1

Crx
p
r +

S∑
r=α+1

Crx
p
r (p > q). (29b)

In this case the second set ofβ conditions in (11) may be used to eliminate theβ values
of Cr(α + 1 6 r 6 S) in favour of Cr(1 6 r 6 α). Further, since the relevant conditions
(11) are given atp > k and we are interested in values ofp < k, it follows by an argument
similar to that used above that the proportional contribution toRpq for thosexr with larger
modulus will become smaller asp increases and hence ifk − p > Z the contribution toR
arising from the second summation in (29b) can be neglected, so that equation (13b) can
be approximated by

Rpq =
α∑

r=1

Crx
p
r (p > q). (29c)
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We now combine equations (29a) and (29c) with the result (22), but noting first that the
latter was derived by equating expressions forRpq when p is in the neighbourhood of
q, [q − (α − 1) 6 p 6 q + (β − 1)], so that any conclusions are subject to the conditions
q > Z andk −q > Z. When these conditions are satisfied equations (29a) and (29c) imply
that in equation (22) the only non-zeroAr corresponds toα + 1 6 r 6 S, while the only
non-zeroCr corresponds to 16 r 6 α. Hence we obtain directly from equation (22) that
for

1 6 r 6 α Ar = 0 and Cr =
[
aβxq+1−α

r

S∏
σ=1

(σ 6=r)

(xr − xσ )

]−1

(30a)

while for

α + 1 6 r 6 S Ar = −
[
aβxq+1−α

r

S∏
σ=1

(σ 6=r)

(xr − xσ )

]−1

and Cr = 0. (30b)

Our final conclusion is thus that if the four quantitiesp, q, k −p, k − q are all greater than
Z, then

Rpq = −
(

1

aβ

) S∑
r=α+1

xp−q+α−1
r

S∏
σ=1

(σ 6=r)

(xr − xσ )−1 (p 6 q) (31a)

Rpq =
(

1

aβ

) α∑
r=1

xp−q+α−1
r

S∏
σ=1

(σ 6=r)

(xr − xσ )−1 (p > q). (31b)

We note that the form (31) corresponds to that given in equation (26) for the situation when
B and E are both diagonal and independent ofk. It is clear that ifk � Z, then use of
equations (31) to solveMy = z for y (givenz) will yield accurate values foryp except for
1 6 p . Z andk − Z . p 6 k.

A particular case for which explicit forms forRpq can be found (for allk) is when
M is a triangular matrix (upper or lower). Although the inverse of such a matrix can be
found numerically by backward or forward substitution (respectively), such an approach is
not designed to yield formulae of the type considered here, and we therefore proceed to
illustrate our technique for a lower triangular matrix corresponding toα = S andβ = 0. The
first set of relations in (11) yieldS homogeneous linear relations between theAr(1 6 r 6 S)

with the solutionAr = 0(1 6 r 6 S), while no constraints on theCr arise from the second
set of relations sinceβ = 0. The values ofCr are thus given directly by equation (22) with
Ar = 0 and lead to the result theR is a lower triangular matrix with elements given by

Rpq = 0 (p < q) (32a)

Rpq =
(

1

aβ

) S∑
r=1

xp−q+α−1
r

S∏
σ=1

(σ 6=r)

(xr − xσ )−1 (p > q) (32b)

for all values ofk.
Finally, we give a numerical example of the implementation of the above procedures,

taking, for the sake of simplicity, the case ofS = 3 (S = 2 has already been illustrated
earlier). Now in general, solutionsxr of equation (12) will have to be obtained numerically
at the outset of the calculation and in order to avoid this and to derive simple formulae we
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shall take values for thean which give integer solutions for equation (12). We therefore
consider the matrix

M =



−6 1 0 0 0 . . . 0 0
11 −6 1 0 0 . . . 0 0
−6 11 −6 1 0 . . . 0 0
0 −6 11 −6 1 . . . 0

. . . . . . . . . . . . . . . . . .
...

...

0 0 0 . . . . . . . . . −6 11 −6 1 0
0 0 0 . . . . . . . . . 0 −6 11 −6 1
0 0 0 . . . . . . . . . 0 0 −6 11 −6


(33)

corresponding toα = 2, β = 1 with a−2 = −6, a−1 = 11, a0 = −6, a1 = 1. x then satisfies
the equationx3 − 6x2 + 11x − 6 = 0 with solutionsx1 = 1, x2 = 2, x3 = 3 so that

Rpq = A1 + 2pA2 + 3pA3 (p 6 q) (34a)

Rpq = C1 + 2pC2 + 3pC3 (p > q). (34b)

Equation (22) gives

C1 − A1 = 1

2
C2 − A2 = −1

2q−1
C3 − A3 = 1

(2 × 3q−1)
(35)

while conditions (11) yield

A1 + A2 + A3 = 0 (36a)

A1 + 1
2A2 + 1

3A3 = 0 (36b)

C1 + 2k+1C2 + 3k+1C3 = 0. (36c)

From equations (36c) and (35) we then obtain

A1 + 2k+1A2 + 3k+1A3 = − 1
2 + 2k−q+2 − 1

2 × 3k−q+2. (36d)

Equation (36d) corresponds to equation (24) and together with equations (36a) and (36b)
(corresponding with equation (23)) give three equations to determine the unknownA1, A2,
A3. Equations (36a) and (36b) readily yield A1 = (

1
3

)
A3, A2 = (− 4

3

)
A3 (as there are

only two equations it is unnecessary to use properties of the Vandermonde matrix), and
substituting into equation (36d) gives

A3 = (− 3
2

)
(3k−q+2 − 2k−q+3 + 1)/(3k+2 − 2k+3 + 1)

from which A1, A2, C1, C2, C3 are readily found. Hence we obtain for

p 6 q Rpq = −(3k−q+2 − 2k−q+3 + 1)(3p+1 − 2p+2 + 1)

2(3k+2 − 2k+3 + 1)
(37a)

p > q Rpq = Rpq(for p 6 q) + 1
2(3p−q+1 − 2p−q+2 + 1) (37b)

and we note that thep, q dependence follows that given in equations (26). For the limiting
forms ofRpq whenp, q, k −p, k − q are all greater thanZ, we obtain from equations (31)
that for

p 6 q Rpq = −3p−q+1

2
(38a)

p > q Rpq = 1
2 − 2p−q+1 (38b)

and these are readily seen to hold as the limiting forms of equations (37) forZ defined by
( 2

3)Z � 1, corresponding perhaps toZ ∼ 10–15. Thus fork & 100 the limiting forms (38)
will give a very good approximation for the majority of the elements ofR.
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