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Analytical inversion of a particular type of banded matrix

S Simons

School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London
E1 4NS, UK

Received 7 May 1996

Abstract. An alternative approach to that described in [1] is developed for analytically
inverting a particular type of tridiagonal matrix. The technique is then extended to deal with a
general banded matrix in which diagonal elements are identical and are flanked in each row by
the same set of quantities.

A recent paper [1] developed an analytical approach to the inversiork of & tridiagonal
matrix of the form

D 1 0 0. 0
1 D1 0. 0
0 1 D 1. 0
M = 1)
000 ..1D 1 0
0O 00 ..01D 1
000 ..00O0 1D

where D is an arbitrary constant. Their method was based on a calculation of the value of
the determinant of the matrix together with its cofactors and led to an explicit expression for
R,, whereR = M~1. The purpose of the present contribution is to develop a simpler and
more direct approach to the problem whose main advantage is that it may be applied to any
k x k matrix with the following structure. The diagonal elements of the matrix are identical
and are flanked in each row by the same sef@f k) non-zero elements, the remaining
elements of the matrix being zero. We proceed to explain the technique by applying it first
to the tridiagonal matri3M in (1) before showing how it may be generalized.

SinceMR = |, it follows that

Rp-1g+ DRpg+ Rpy19 =0 (r#9q) (2)
Ry—1g + DRyg + Ryy14 = 1 (r=q ©)

for 1 < p < kwith Ry, = Ri14 = 0. The structure of equation (2) is that of a homogeneous
difference equation with constant coefficients and we therefore look for a solution of the
form R,, = constant x?. This yieldsx®+ Dx + 1 = 0 with solutionsx = exp(=1) where
coshh. = —D/2. The general solution of equation (2) will therefore be of the form

R,y = A€ + B, (4)
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but since equation (2) does not apply when= g we shall suppose equation (4) to hold
for p < g, while for p > ¢ we take

Ry, = C,&” + E,e 7. (5)

Here A,, B,, C,, E, are arbitrary constants whose value must now be determined. We
begin with the ‘boundary’ condition®q, = Ri+1, = O given above, which relate the two
constants present in each of equations (4) and (5) and allow these equations to be rewritten
as

qu = Fq S'”“P)\) (P < C]) (Ga)
Ryy = Gysinhik + 1= pil  (p = q). (65)

To determineF, and G, we note first that although equation (2) does not apply when
p = g, the last term on the left-hand side involveg, whenp = ¢ — 1. Similarly, the first
term on the left-hand side involve®,, when p = ¢ 4+ 1. Thus for a consistent solution
equations (6) and (&) must yield the same value fat,, giving

Ry = F;sinh(gl) = G4 sinh[(k + 1 — g)A] @)
whence
F, = H,sinh[(k + 1 — g)A] G, = H, sinh(g}). (8)

Finally we use equation (3) to determig,, choosing the relevark,, from equations (6)
and (7). Hence we obtain

—sinh(pA) sinh[(k + 1 — g)A]
sinh sinh[(k + 1)A]
—sinh[(k + 1 — p)A]sinh(g))

R, = > 9b
ra sinha sinh[(k + 1)A] (P >4) (%0)
which is equivalent to the result given in [1].
We now proceed to consider the generalization of our techniquecte & matrix M in
which each of the (identical) diagonal elemengss flanked on the left by the same set of

qu = (P < CI) (ga)

a(> 0) non-zero elements_,,a_y.1, ...,a_1 and on the right by the same set®f> 0)
non-zero elementsy, a, ..., ag. It is to be understood in this description that of necessity
not all these elements will be present in the firsind the lasp rows; thus, for example, the
first row will be ap, as, ..., ag, 0, 0. .. while the last row willbe..., 0,0, a_, ..., a_1, ao.
If R = M~1 it then follows that
B
Z anR[H—nq =0 (P # q) (10&)
n=—uo
B
Z aan+11q =1 (P = Q) (l(b)
n=—u

These relations will clearly hold far < p < k— g corresponding with those rows in which

all the elementsi_, ..., ao, ... ag occur. However, for those rows in which not all these
elements are present, equations (10) will only hold if we arrange that the spurious terms
occurring in the summations are zero. We can do this by supplementing equations (10)
(now valid for 1< p < k) by the S(= « + 8) ‘boundary’ conditions,

Riog=Rooug=...=Roy =0=Rip1y = Riyoy = ... = Riypq4. (11)
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We solve equation (X with a trial solution of the formR,, = constantx x” leading to

S
> apax™ =0 (12)
m=0
with the set of solutionsy, xo, ..., xs. This in turn yields the general solution f&,, of
the form
S
qu - ZA,-)Crp (P < q) (13a)
r=1
S
qu = Z Crx;{? (P > Q) (13))
r=1

where the set of £ constantsA, and C, remain to be determined. It is to be understood
here thatA and C will (apart from r) also depend ork and ¢, but for simplicity
we do not show this dependence explicitly. Now, the solutiona)1Bwust satisfy
equation (1@) for values of p up to and includingg — 1 and for this latter value terms
appearing in (18) include R,,, Ry+14, - - - Ry1p-14, all of which, except the first, are
determined by equation (&8 Similarly the solution (18) must satisfy equation (1)
for values of p down to and including; + 1 and for this latter value, terms appearing
in (10a) include R,,, Ry_14, ... Ry—at14, all of which, except the first, are determined
by equation (18). For a consistent solution we therefore require that the values of
Ry—a+14s Ry—at2q, - .- Ryq ... Ry1p—14 should be the same for equations 41&nd (13),
and this will yield a set off — 1 homogeneous linear relations betweenAheandC,. The
relations (11) (together with (13)) will yield a further set®homogeneous linear relations
between thed, andC,, while equation (1B) gives a single inhomogeneous relation between
these quantities. We thus have a total 6flihear equations which will determine the§ 2
constantsd, andC, (1 < r < §). The coefficients in theseS2equations will involve both
k andg and an explicit solution of the equations by expansion of the relevant determinants
(using Cramer’s rule) can thus become (algebraically) prohibitive. For exampe=ib
we would be involved with the non-trivial task of expanding ax1@0 determinant whose
elements depend agnandg, and even if this were done, the complexity of the results would
considerably detract from their value. We therefore proceed now to consider a technique
for significantly simplifying the solution of theseSdinear equations. We shall show that
the number of equations that require to be solved by Cramer’s rule can be reduced to a
number not exceeding/2, so that in the above-mentioned caseScf 5, there will be at
most two linear equations to be solved—a trivial task.

We begin with theS — 1 relations arising from the requirement (given in the last
paragraph) that equations (@3and ¢) should yield the same values By, for ¢g—(a—1) <
p < g+ (B —1). On defining

Al = A x0T Cl = Cxit (14)

these relations are readily expressed in the form
S
Y C—Apxy =0 (0<y<S-2. (15)
r=1

We now develop the left-hand side of equation {jL®y substituting forR,,,, from
equations (13). We use equation ¢)3or —a < n < 8 —1 and (13) for n = B (since
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n = B — 1 is the largest value for which (23 is valid). This gives

B S g-1 N
S aRying = 3 A,xg< ) ) Fap 3 Catt, (16)
n=—ao r=1 n=—a r=1

It follows from equations (12) thaZfia apx!! = —aﬂx,ﬁ and substituting into equation (16)
then yields

B S S
> anRying =ag Y (Co— A)xI™ =ag» (C] — AxSh (17)
r=1 r=1

n=—uo

Equating this to unity allows equation (A)0to be taken together with equations (15) to give
S
YC—ADx =71 O<y<S-1) (18a)
r=1

whereA,;; = 000 < y < §—2) and Ay = 1/ag. Equations (18) form a set ofS
equations for theS unknownsC, — A’.(1 < r < §) and may equivalently be written

S
Z Dmn(cy/l - A;l) = Am(-’]- <m< S) (18))
n=1
where
Dy, = x:,n_l- (18C)

D,,, is a§ x § Vandermonde matrix [2] and it is known that its inverse is given by

S S
[T-—""=> (19)

[2]; that is, [D~1],, is the coefficient of’~! in the expansion of thé —1 degree polynomial
in x given by the left-hand side of equation (19) and characterized by a particular choice
of x,. Now, the solution of equation (8 is

’ / J -1 [Dil]rx
¢l = A= IDMA = (20)
=1 B

since Ag(= 1/ag) is the only non-zero component of,. Further, it follows from
equation (19) that

1

D= (21)

nsazl (xr - xa)

(0#r)
and thus from equations (14) and (20) that
S -1

C,— A, = [aﬂx;ﬁl—a ]‘[ (x, — xa)i| 1L<r<8). (22)

o=1

(0#r)

Equation (22) is an important result as it allows us to elimingtein favour of A, in
equations (11) taken together with (13), and these will then yield a s&tesfuations for
the S unknownsA,. To progress further we shall now suppose that 8; our approach



Analytical inversion of a banded matrix 759

is easily modified if« < 8. Using equation (1), the first set of relations in (11) may be
rewritten as
o S
Y DAl == DA A<v<a) (23)
r=1 r=oa+1
where D,, is defined in equation (£§ and A = A,x}*"‘. The second set of relations in
(11) may be rewritten with the help of equations £1and (22) as

N N
DoAX =3It A< p<p) (24)
r=1 r=1

whereT, is the right-hand side of equation (22). Now, since the inverse ofuthea
Vandermonde matridD,, is known (as discussed above), the se& g€lations (23) may be
used to express eacli’ (and henced,) for 1 < r < « as a linear combination ot/ (and
henceA,) for « + 1 < r < S. These may then be used to eliminatg in equation (24)
for 1 <r <« in favour of A, for « + 1 < r < §. The net result of this will be to express
equation (24) as a set @f equations for thegg unknownsA, (e + 1 < r < §), of the form

S S

Z G;u’Ar = - erx’{<+u (1 < 1% < ;3) (25)
r=a+1 r=1

and we note that since > B, the number of equations (25) is S/2. When these

equations have been solved far(e + 1 < r < §), the values ofA, (1 < r < «) may

be obtained from the already-calculated expressions for the latter in terms of the former.

Finally the set ofC,(1 < r < §) are obtained from equation (22). As regards the

dependence ofi, and C, it follows from equation (22) that the only dependence of the

right-hand side of equation (25) is through a linear combination owértermsx, ?. Thus

in view of equations (23) and (224, and C, will take the formsA, = Zle B..x; 4,

C, = Zle E,;x; 7 where theS x S matricesB,, and E,, (with elements depending dn

but independent of) are given by implementing the procedures described above. It then

follows from equations (13) and (22) that the genegraly dependence oR,, will be of

the form

S
qu = Z Brtx;{)-xt_q (P < Q) (26a)
rt=1
S
Ryg =) Enxlx*  (p>9q) (260)
rit=1

where
E.; = B, +x,(!rr5rt-

Now, in solving equation (25) two approaches are possible, based on the observation that
while the right-hand side depends on bétandg (sincel’, depends o), the matrixG,,
will depend onk but will be independent of. If, therefore, an expression is required for
the elements oR in terms of bothk and p andg, it will be necessary to solve equation (25)
by Cramer’s rule and direct expansion of the relevant determinants as outlined earlier, and
for useful results (in the absence of a computer algebra program) this will be restricted to
situations where the smaller efand does not exceed, say 4 or 5. However, if expressions
are required for the elements Bfin terms of p andq for a specifiechumerical value of
k then expressions foA, (¢ + 1 < r < §) may be obtained from equation (25) by first
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inverting G, numerically before operating with this inverse on thedependent right-hand
side. ltis clear that this procedure can be effective for values af 8 significantly greater
than the 4 or 5 mentioned above.

We now proceed to show that a considerable simplification occurs in the implementation
of the above technique if we confine our attention to values ahdg which are well away
from the borders of the matrix. By this we mean that we are interested in expressions for
R,, when the four quantitiep, ¢, k — p, k — g are all greater thaiz where Z (to be
considered in detail presently) depends on the rogts,, ..., xs, but is independent df.
This will mean that for sufficiently large values bfthe vast majority of the? values of
R,, will be given by the formulae which we will now derive. We begin by ordering the
rootsx,, so that|x;| < |x2| < ... < |xs| and rewrite equation (13 as

o S

Rpg =) Al + D Axl (p<q. (27)
r=1 r=a+1

Now, as pointed out in the last paragraph, the first set abnditions in (11) can be used

to determineA, (1 < r < «) in terms of A, (@ + 1 < r < §), the relationship taking the

form

S
A= Y FuA, 1<r<a

pn=a+1
where the matrixF,, depends on the values of and xi,...,xs. This then allows
equation (27) to be expressed in the form
S o
Rpyg= Y Axl +)  Fuxl] (r < 9. (28)
r=a+1 n=1

Now, since thexs are ordered such that.| for « + 1 < r < § is greater tharx,| for
1< u < «, it follows that for a sufficiently large value of (let it be Z) » 7 _; F,,x}, can
be neglected compared wittf, and thus forp > Z equation (13) may be approximated
by

Ryg= Y Axl  (p<q. (2%)

Although the value o cannot be calculated exactly, it can be estimated from the inequality
(xg/xq+1)* < 1 corresponding t&Z = y/In(x,11/x,) With y lying in the interval of, say,
5-10. We now follow the same procedure with equationb}18vriting it initially in the

form

o S
Rpyg =Y Cox! + Y Cx} (= 9. (2%)
r=1 r=a+1
In this case the second set pfconditions in (11) may be used to eliminate thesalues
of C,(a +1<r <S)infavour of C,(1 < r < «). Further, since the relevant conditions
(11) are given ap > k and we are interested in values pf< k, it follows by an argument
similar to that used above that the proportional contributio® fp for thosex, with larger
modulus will become smaller gs increases and hencekf— p > Z the contribution taR
arising from the second summation in (@%an be neglected, so that equationA)L8an
be approximated by

r=1



Analytical inversion of a banded matrix 761

We now combine equations (@2Pand (22) with the result (22), but noting first that the
latter was derived by equating expressions Ry, when p is in the neighbourhood of
q,.[g — (@¢—1) < p< g+ (B— 1) so that any conclusions are subject to the conditions
q > Z andk —q > Z. When these conditions are satisfied equationg)a8d (22) imply
that in equation (22) the only non-zery. corresponds ta + 1 < r < S, while the only
non-zeroC, corresponds to X r < «. Hence we obtain directly from equation (22) that
for

S -1
1<r<a A, =0 and C, = [aﬂx;’“‘“ I & - xg)] (3Ga)
@Zh
while for

s -1
a+1<r<S A, = —|:a¢;x;1+l_°‘ 1_[ (x, — xg)] and C,=0. (300
o=1
(0#r)
Our final conclusion is thus that if the four quantitiesq, k — p, k — g are all greater than
Z, then

1\ & S
o=1

r=a+1

(o#r)
1 o S
B r=1 o=1
(o#r)

We note that the form (31) corresponds to that given in equation (26) for the situation when
B and E are both diagonal and independentkof It is clear that ifk > Z, then use of
equations (31) to solvBly = z for y (given z) will yield accurate values fop, except for
1<p<Zandk—Z < p <k

A particular case for which explicit forms foR,, can be found (for alk) is when
M is a triangular matrix (upper or lower). Although the inverse of such a matrix can be
found numerically by backward or forward substitution (respectively), such an approach is
not designed to yield formulae of the type considered here, and we therefore proceed to
illustrate our technique for a lower triangular matrix corresponding to S andg = 0. The
first set of relations in (11) yield homogeneous linear relations betweenAhél < r < §)
with the solutionA, = 0(1 < r < §), while no constraints on th€, arise from the second
set of relations sinc@ = 0. The values o, are thus given directly by equation (22) with
A, = 0 and lead to the result tHe is a lower triangular matrix with elements given by

qu =0 (p < q) (32a)
1 S S
Rpy = () St [ -2 (2 (320)
B r=1 o=1
(o#r)

for all values ofk.

Finally, we give a numerical example of the implementation of the above procedures,
taking, for the sake of simplicity, the case 6f= 3 (S = 2 has already been illustrated
earlier). Now in general, solutions of equation (12) will have to be obtained numerically
at the outset of the calculation and in order to avoid this and to derive simple formulae we
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shall take values for the, which give integer solutions for equation (12). We therefore
consider the matrix

6 1 0 0 O 0 0
11 -6 1 0 0 0 o0
6 11 -6 1 0 0 0
0 -6 11 -6 1 ... 0

M = o (33)
O 0 0 ... .. .. -6 11 -6 1 0
O 0 0 ... .. .. 0 -6 11 -6 1
O 0 0 ... ..... 0 0 -6 11 -6

corresponding tae = 2, 8 = 1 witha_, = —6,a_1 = 11,a9 = —6, a; = 1. x then satisfies
the equationv® — 6x2 + 11x — 6 = 0 with solutionsx; = 1, x, = 2, x3 = 3 so that

Rpg = A1+ 2P Ay + 3P Az (p<q) (34a)

Ry =C1+2°C2+37C3 (p=q). (34b)
Equation (22) gives

C1—A1=% Cz—A2=2%}l Cs—A3=ﬁ (35)
while conditions (11) yield

A1+ A +A3=0 (369)

Ar+ 3424+ 143=0 (3&0)

C1+21Cy + 33 = 0. (36c)
From equations (3§ and (35) we then obtain

Ap+ 2L A, 4 31, = _% 4 Qk—a+2 _ % « 3k-a+2. (36d)

Equation (3@) corresponds to equation (24) and together with equations) (86d (3®)
(corresponding with equation (23)) give three equations to determine the unkfigwyp,
As. Equations (36) and (36) readily yield A; = (3) As, A2 = (—3) As (as there are
only two equations it is unnecessary to use properties of the Vandermonde matrix), and
substituting into equation (3§ gives

Az = (_%) (3k—q+2 _ 2k—£1+3 + 1)/(3k+2 _ 2k+3 4 1)
from which A, Ay, Cq1, Co, C3 are readily found. Hence we obtain for
_(3k—q+2 _ 2k—q+3 + l)(3p+l _ 2p+2 + l)

2(3k+2 _ 2k+3 + 1)

p=q R,; = Ry (for p < gq) + %(3"_‘1+1 —2PTat2 4 1) (370)

and we note that thp, ¢ dependence follows that given in equations (26). For the limiting

forms of R,, whenp, g, k — p, k — g are all greater tha, we obtain from equations (31)
that for

(37a)

P<q Ryg =

—3p—q+1
5 (380)
p 2 q qu — % _ 2P—(I+1 (3&))

and these are readily seen to hold as the limiting forms of equations (37) diefined by
(%)Z <« 1, corresponding perhaps #~ 10-15. Thus fok = 100 the limiting forms (38)
will give a very good approximation for the majority of the elementsRof

P<q Rpg =
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